When... we have a series of values of a quantity which continually diminish, and in such a way, that name any quantity we may, however small, all the values, after a certain value, are severally less than that quantity, then the symbol by which the values are denoted is said to diminish without limit. And if the series of values increase in succession, so that name any quantity we may, however great, all after a certain point will be greater, then the series is said to increase without limit. It is also frequently said, when a quantity diminishes without limit, that it has nothing, zero or 0, for its limit: and that when it increases without limit it has infinity or ∞ or 1⁄0 for its limit. (Augustus De Morgan)

When... we have a series of values of a quantity which continually diminish, and in such a way, that name any quantity we may, however small, all the values, after a certain value, are severally less than that quantity, then the symbol by which the values are denoted is said to diminish without limit. And if the series of values increase in succession, so that name any quantity we may, however great, all after a certain point will be greater, then the series is said to increase without limit. It is also frequently said, when a quantity diminishes without limit, that it has nothing, zero or 0, for its limit: and that when it increases without limit it has infinity or ∞ or 1⁄0 for its limit.

Augustus De Morgan

Related topics

certain great increase infinity less limit name nothing point quantity say series small succession symbol value way zero

Related quotes