Each of the most basic physical laws that we know corresponds to some invariance, which in turn is equivalent to a collection of changes which form a symmetry group. ...whilst leaving some underlying theme unchanged. ...for example, the conservation of energy is equivalent to the invariance of the laws of motion with respect to translations backwards or forwards in time... the conservation of linear momentum is equivalent to the invariance of the laws of motion with respect to the position of your laboratory in space, and the conservation of angular momentum to an invariance with respect to directional orientation... discovery of conservation laws indicated that Nature possessed built-in sustaining principles which prevented the world from just ceasing to be. There were fewer roles for the Deity to play... (John D. Barrow)

Each of the most basic physical laws that we know corresponds to some invariance, which in turn is equivalent to a collection of changes which form a symmetry group. ...whilst leaving some underlying theme unchanged. ...for example, the conservation of energy is equivalent to the invariance of the laws of motion with respect to translations backwards or forwards in time... the conservation of linear momentum is equivalent to the invariance of the laws of motion with respect to the position of your laboratory in space, and the conservation of angular momentum to an invariance with respect to directional orientation... discovery of conservation laws indicated that Nature possessed built-in sustaining principles which prevented the world from just ceasing to be. There were fewer roles for the Deity to play...

John D. Barrow

Related topics

angular basic ceasing collection conservation deity discovery energy equivalent example form forwards group invariance laboratory leaving linear momentum motion nature orientation physical play position respect space sustaining symmetry theme time turn underlying world laws built-in directional

Related quotes