E = mc2 really applies only to isolated bodies at rest. In general, when you have moving bodies, or interacting bodies, energy and mass aren't proportional. E = mc2 simply doesn't apply. ...For moving bodies, the correct mass-energy equation is
E=\frac {mc^2} {\sqrt{1-\frac{v^2} {c^2}}}
where v is the velocity. For a body at rest (v=0), this becomes E = mc2. ...we must consider the special case of particles with zero mass... examples include photons, color gluons, and gravitons. If we attempt to put m = 0 and v = c in our general mass-energy equation, both the numerator and denominator on the right-hand-side vanish, and we get the nonsensical relation E = 0/0. The correct result is that the energy of a photon can take any value. ...The energy E of a photon is proportional to the frequency f of the light it represents. ...they are related by the Planck-Einstein-Schrödinger equation E = hf, where h is Plank's constant. (Frank Wilczek)

E = mc2 really applies only to isolated bodies at rest. In general, when you have moving bodies, or interacting bodies, energy and mass aren't proportional. E = mc2 simply doesn't apply. ...For moving bodies, the correct mass-energy equation is E=\frac {mc^2} {\sqrt{1-\frac{v^2} {c^2}}} where v is the velocity. For a body at rest (v=0), this becomes E = mc2. ...we must consider the special case of particles with zero mass... examples include photons, color gluons, and gravitons. If we attempt to put m = 0 and v = c in our general mass-energy equation, both the numerator and denominator on the right-hand-side vanish, and we get the nonsensical relation E = 0/0. The correct result is that the energy of a photon can take any value. ...The energy E of a photon is proportional to the frequency f of the light it represents. ...they are related by the Planck-Einstein-Schrödinger equation E = hf, where h is Plank's constant.

Frank Wilczek

Related topics

attempt body case color constant correct denominator energy equation frequency general include light mass moving numerator proportional relation rest result special take value vanish velocity zero frac mass-energy photon sqrt

Related quotes