I also knew the formula that expresses the energy distribution in the normal spectrum. A theoretical interpretation therefore had to be found at any cost, no matter how high. It was clear to me that classical physics could offer no solution to this problem, and would have meant that all energy would eventually transfer from matter to radiation. ...This approach was opened to me by maintaining the two laws of thermodynamics. The two laws, it seems to me, must be upheld under all circumstances. For the rest, I was ready to sacrifice every one of my previous convictions about physical laws. ...[One] finds that the continuous loss of energy into radiation can be prevented by assuming that energy is forced at the outset to remain together in certain quanta. This was purely a formal assumption and I really did not give it much thought except that no matter what the cost, I must bring about a positive result.
Max Planck
Related topics
approach
assuming
assumption
certain
classical
clear
cost
distribution
energy
found
formal
formula
high
interpretation
loss
maintaining
matter
mean
normal
offer
outset
physical
physics
positive
previous
problem
quantum
radiation
ready
remain
rest
result
sacrifice
solution
spectrum
thermodynamics
thought
transfer
under
circumstances
laws
Related quotes
Like all great churches, that are not mere store-houses of theology, Chartres expressed, besides whatever else it meant, an emotion, the deepest man ever felt,- the struggle of his own littleness to grasp the infinite. You may, if you like, figure in it a mathematic formula of infinity,- the broken arch, our finite idea of space; the spire, pointing, with its converging lines, to Unity beyond space; the sleepless, restless thrust of the vaults, telling the unsatisfied, incomplete, overstrained effort of man to rival the energy, intelligence and purpose of God. Thomas Aquinas and the schoolmen tried to put it in words, but their church is another chapter. In act, all man's work ends there;- mathematics, physics, chemistry, dynamics, optics, every sort of machinery science may invent,- to this favor come at last, as religion and philosophy did before science was born.
Henry Adams
To conclude, if we call light, those rays which illuminate objects, and radiant heat, those which heat bodies, it may be inquired whether light be essentially different from radiant heat? In answer to which I would suggest that we are not allowed, by the rules of philosophizing, to admit two different causes to explain certain effects, if they may be accounted for by one. ...If this be a true account of the solar heat, for the support of which I appeal to my experiments, it remains only for us to admit that such of the rays of the sun as have the refrangibility of those which are contained in the prismatic spectrum, by the construction of the organs of sight, are admitted under the appearance of light and colors, and that the rest, being stopped in the coats and humors of the eye, act on them, as they are known to do on all the other parts of our body, by occasioning a sensation of heat.
William Herschel
The quantum theory, as it is now constituted, presents us with a very great challenge, if we are at all interested in such a venture, for in quantum physics there is no consistent notion at all of what the reality may be that underlies the universal constitution and structure of matter. Thus, if we try to use the prevailing world view based on the notions of particles, we discover that the 'particles' (such as electrons) can also manifest as waves, that they move discontinuously, that there are no laws at all that apply in detail to the actual movements of individual particles and that only statistical predictions can be made about large aggregates of such particles. If on the other hand we apply the world view in which the world is regarded as a continuous field, we find that this field must also be discontinuous, as well as particle-like, and that it is as undermined in its actual behaviour as is required in the particle view of relation as a whole.
David Bohm