As the natural sciences have developed to encompass increasingly complex systems, scientific rationality has become ever more statistical, or probabilistic. The deterministic classical mechanics of the enlightenment was revolutionized by the near-equilibrium statistical mechanics of late 19th century atomists, by quantum mechanics in the early 20th century, and by the far-from-equilibrium complexity theorists of the later 20th century. Mathematical neo-Darwinism, information theory, and quantitative social sciences compounded the trend. Forces, objects, and natural types were progressively dissolved into statistical distributions: heterogeneous clouds, entropy deviations, wave functions, gene frequencies, noise-signal ratios and redundancies, dissipative structures, and complex systems at the edge of chaos. (Nick Land)

As the natural sciences have developed to encompass increasingly complex systems, scientific rationality has become ever more statistical, or probabilistic. The deterministic classical mechanics of the enlightenment was revolutionized by the near-equilibrium statistical mechanics of late 19th century atomists, by quantum mechanics in the early 20th century, and by the far-from-equilibrium complexity theorists of the later 20th century. Mathematical neo-Darwinism, information theory, and quantitative social sciences compounded the trend. Forces, objects, and natural types were progressively dissolved into statistical distributions: heterogeneous clouds, entropy deviations, wave functions, gene frequencies, noise-signal ratios and redundancies, dissipative structures, and complex systems at the edge of chaos.

Nick Land

Related topics

century chaos classical complex complexity early edge enlightenment entropy information late later mechanics natural quantum rationality social theory trend wave gene neo-darwinism forces sciences

Related quotes