Thomas Little Heath quotes
Menæchmus, a pupil of Eudoxus, and a contemporary of Plato, found the two mean proportionals by means of conic sections, in two ways, (α) by the intersection of two parabolas, the equations of which in Cartesian co-ordinates would be x2=ay, y2=bx, and (β) by the intersection of a parabola and a rectangular hyperbola, the corresponding equations being x2=ay, and xy=ab respectively. It would appear that it was in the effort to solve this problem that Menæchmus discovered the conic sections, which are called, in an epigram by Eratosthenes, "the triads of Menæchmus."
Thomas Little Heath
The researches of the last thirty or forty years into the history of mathematics (I need only mention such names as those of [Carl Anton] Bretschneider, Hankel, Moritz Cantor, [Friedrich] Hultsch, Paul Tannery, Zeuthen, Loria, and Heiberg) have put the whole subject upon a different plane. I have endeavoured in this edition to take account of all the main results of these researches up to the present date. Thus, so far as the geometrical Books are concerned, my notes are intended to form a sort of dictionary of the history of elementary geometry, arranged according to subjects; while the notes on the arithmetical Books VII.-IX. and on Book X follow the same plan.
Thomas Little Heath
Hippocrates also attacked the problem of doubling the cube. ...Hippocrates did not, indeed, solve the problem, but he succeeded in reducing it to another, namely, the problem of finding two mean proportionals in continued proportion between two given straight lines, i. e. finding x, y such that a:x=x:y=y:b, where a, b are the two given straight lines. It is easy to see that, if a:x=x:y=y:b, then b/a = (x/a)3, and, as a particular case, if b=2a, x3=2a3, so that the side of the cube which is double of the cube of side a is found.
Thomas Little Heath
The method of exhaustion was not discovered all at once; we find traces of gropings after such a method before it was actually evolved. It was perhaps Antiphon. the sophist, of Athens, a contemporary of Socrates, who took the first step. He inscribed a square (or, according to another account, a triangle) in a circle, then bisected the arcs subtended by the sides, and so inscribed a polygon of double the number of sides; he then repeated the process, and maintained that, by continuing it, we should at last arrive at a polygon with sides so small as to make the polygon coincident with the circle. Thought this was formally incorrect, it nevertheless contained the germ of the method of exhaustion.
Thomas Little Heath